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Formula (3.5) makes possible the separation of the basic component in the approxi- 
mate representation of quasi-normal trajectories. The solution can be refined by various 

means. For this it is expedient to use the Gale&in method. It is convenient to select the 
coordinate functions in the form of polynomials of space coordinates. Efficiency of the 
Gale&in method is explained by that in zero approximation the shape of oscillationscan 

usually be determined fairly accurately. The unknown weighting coefficients at coordi- 
nate functions are in this case small, which makes it possible to linearize in the first 

approximation the system of transcendental equations that link these. 
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Dynamics of adiabatic motions of a gravitating perfect gas of constant density 
filling a certain ellipsoid is considered in the case when velocities are linear 
functions of coordinates. It is shown that for an adiabatic exponent Y < 4/s the 
spherically symmetric compression of gas into a point is an unstable process. A 
reasonable approximation of the oscillating gas motion under strong compression 
for considerable negative gas energy is indicated. Oscillating mode of expansion 
of a rotating gaseous ellipsoid in vacuum, which obtains also in the absence of 
gravitational interaction between gas particles, is determined. 
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Motions of a continuous medium at velocities that are linear functions of coordinates 
were the subject of numerous investigations,the earliest of which were the classical works 
of Dirichlet, Dedekind and Riemann on the forms of equilibrium of a gravitating perfect 

incompressible fluid (see [l, 21). Dirichlet [3] had also investigated nonlinear O%ilhtiOnS 

of a fluid ellipsoid. which are extended to small oscillations in the neighborhood of Mac- 
laurin ellipsoids (see [2, 41). Similar motions of nongravitating perfect gas were inves- 
tigated in [5 - 83 ( *) in the more general case (gas density is not constant in space), 

and the motion of dust ellipsoids were investigated in [9, lo]. General problems of mo- 

tion of continuous medium in which velocities are linear functions of coordinates con- 
sidered in the book [ll], where the motion of an ellipsoid of charged fluid is also dealt 
with. 

The motion of a gravitating gas sphere was considered in [12 - 141 as a model of pul- 
sations of variable Cepheid stars, The spherically symmetric motion of a gravitating 
gas of variable density, similar to that of nongravitating gas [S], was determined in [15]. 
The motion of gravitating gas ellipsoids was considered in [16,17] as the model of for- 

mation of galaxies and stars from clouds of initially cold gas. It was noted in [16] that 
the adiabatic motion of a gravitating gaseous ellipsoid for negative energy E, as well 

as that of an incompressible fluid ellipsoid investigated by Dirichlet in 1860 (see [2-41) 

takes place in an oscillatory mode. 

It is shown in the part of this paper that deals with the motion for E < 0 that forcer- 
tam parameter values the oscillating mode can be approximated by a sequence of sim- 

pler motions of a gravitating dust ellipsoid, A qualitative description of oscillatory modes 
of a gravitating gaseous ellipsoid with E > 0 (expansion of a rotating gaseous cloud in 
vacuum) appears in Sect. 2 and for E’ < 0 in Sect. 3 below). The determination of the 
mode of ellipsoid motion with E < 0, based on the analysis of singular points and sepa- 

ratrices (see Sect. 4) of the related dynamic system is presented in Sect. 5 (a similar de- 
termination of the oscillatory mode for E > 0 appears in the paper cited below). The 

appendix contains the analysis of a similar problem of two-dimensional hydrodynamics, 

1. Strtemant of thr problem, The adiabatic motion of a gravitating perfect 
gas is determined by equations (see [Z]) 

Pg = -ggradp--grad@, dp 
== --divv, -$- = 0 (1.1) 

where 7 > 1 is the adiabatic exponent and 0 is the Newtonian potential generated 

by the whole mass of gas. Let us consider solutions of Eqs. (1.1) that satisfy the following 
conditions: Euler’s coordinates ri are linear functions of Lagrangian coordinates uk 

ri = Firs (tbk, i, k - 1,2,3 (1.2) 

(Hence the velocities v1 = dri / dt are linear functions of coordinates rk.) For a2 z 

ai2 + asa + us2 < 1 the gas density p and pressure p are determined by formulas 

3M 
P=,,,o, p=a 

3M 0 - 1) (1 - as) 

4lcVY (F) ’ 
V(F) = detiFa(t)a (1.3) 

*) See also “The oscillating mode of gas cloud expansion in vacuum” by Bogoiavlenskii, 
0. I. Preprint, the Landau Inst. Teor.Fisiki, 19’75. 
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where a and M are constants and M is the total mass of gas. We assume that for 

aa> , p=Oandp=O. By conditions (1.3) the gas of constant density fills 
the ellipsoid which is obtained from a unit sphere a2 < 1 by transformation Fik (t) . 
The pressure is maximum at the ellipsoid center and zero at its surface. 

Denoting the ellipsoid semiaxes by 4, d, and d, we obtain for the Newtonian po- 
tential CD at point (x1, zs; 2s) inside the ellipsoid a formula of the form [Z] 

[(d,2 + s) (d$ + s) (ds2 + s)]-“2 as 
where G is the gravitational constant. By using formulas (1.2) - (1.4) and the method 

described in [6, 71 it is possible to show that for the considered motions of gas Eqs.(l. 1) 
are equivalent to the following Lagrangian system determinate in the matrix space : 

d2pik (t) -= _ aav;tF) _++GMap 
dt2 

ik tk 

U (F) = 1 [(d12 + s) (d22 + s) (dS2 + s)]-‘/p ds 
0 

(1.5) 

The investigation of motions of a gravitating perfect gas, described above is, thus, equi- 
valent to the analysis of the motion of a material point in the nine-dimensional space 

of matrix Fi R in a field whose potential is determined bv ( 1.5). Note that system (1.5) 
depends on the particular characteristic parameter 8 = 8a / (3GM) which cannot be 
eliminated by a change of time. 

Note. Since dra, daa and ds2 are eigenvalues of matrix F.F’, the integrand in 

(1.5) is expressed in terms of elements of matrix Fik, as follows : 

(~1~+s)(dz~fs)(d~~+s)=det(F.E~)+~s[(Tr(P~)4)2-Tr(~E~F~*)]+ 

ssTr (M’) +ss 

where Ft is the transposed matrix and Tr (X) is the spur of matrix X. 

2, The orclllrting mode of exprn8ion In vacuum of 0 spinning 
gr,eou, elliproid. Let us consider the motion of a considerably expanded gravi- 

tating gaseous ellipsoid with total energy E > 0 and y > 1. Let 

d,, d,, d3 > q + ( F)1”3y-3) , 
where K is the kinetic energy of gas. Then according to (1.5) coefficients Fi k (t) vary 
in the first approximation by the linear law 

Fiti (t) = Aikt f Bik (2.1) 

With a suitable selection of constants A i k and Bi k the straight line (2.1) intersects 
at some t = to the surface L: V (F) = U, i. e. the ellipsoid is compressed for t --t to 
into a disk along a certain direction. Since this results in an unbounded increase of pres- 
sure which opposes compression, while the velocities of gas and the gravitational forces 
remain constant, the compression is followed by expansion. This process is represented 
as the elastic reflection of the straight Line (2.1) from surface L at the point of inter- 

section at t = to. This is followed by another change of coefficients Fik (t) along 
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a straight line of the form (2.1) with new constants Ail,” and Bikr. This curve may 
again intersect surface L, which means a new compression of the ellipsoid, and so on. 
Thus the change of coefficients Fik (t) along the whole length of the time axis t oc- 
curs in the first approximation along broken lines which are elastically reflected from 
surface L at points of intersection. 

Since L is a highly curved surface, it is possible to direct the initial straight line 
(2.1) so that the number of intersections of the broken lines initiated by it with surface 
L can be as great (but finite) as desired. 

The variation of Fik (t) along any segment of the broken line results in an oscillatory 
mode of the gas with the ellipsoid volume (V (F)) varying between its maximum and 
minimum. The amplitude of oscillations of the ellipsoid volume and of gas density 
p (t) (1.3) can be arbitrarily large and the time r of each oscillation for high energy 
&’ becomes arbitrarily small: a N E-‘/a. The above reasoning is evidently true also 
for G = 0, hence the oscillatory mode also obtains in the absence of gravitational in- 
teraction between particles of gas. 

From the equation of state p = pR T of perfect gas and (1.3) we obtain the expres- 
sion for the temperature 

T =a(y- 1)R-’ (1 - u2)V’-Y (F) (2.2) 

where 8 is the gas constant Pulsations of the volume of gas are obviously accomp~ied 
by fluctuations of its temperature and other physical parameters. 

The oscillating mode ceases abruptly when the infinitely extended next following seg- 
ment of the broken line does not intersect surface L. An unbounded free expansion of 
gas takes place in that case. The realization of an oscillatory mode depends on the pm- 
sence of spinning of the gas, since in the absence of the latter (matrix 11 Fi k (t) II is 
diagonal), surface L degenerates into three coordinate planes and the broken iine has 
only three rebounds to which correspond three consecutive compressions and expansions 
of the ellipsoid along orthogonal axes, The obtained oscillatory mode can be used as 
the model of motion of a spinning gaseous nebula produced by the explosion of a spin- 
ning Supernova star. 

8, Tbs orcfllrtoty mode of motion for .E < 0. If we assume that 
the gas total energy E < 0 and that y < 4js then, as can be readily shown, the ellip 
soid semiaxes d,, d, and ds < C at any instant of time. We shall prove that the mo- 
tion of a gravitating gaseous ellipsoid under strong compression is oscillatory, Assuming 
that the semiaxes are of the same order of magnitude di N d < (GM / ~~~~~~~~~~~ then 
for y < 4/s we obtain (see (1.5)) 

Hence the ellipsoid motion is determined by gravitational forces and is, therefore, 
approximated by the motion of a gravitating dust ellipsoid. According to [ID] a dust 
ellipsoid subjected to gravitational forces is generally compressed into a disk (Le. 
f-& - 0, $ + cs> 0 and ds + Cs > 0 and V (F) = 4d2d3 --f 0). However an un- 
limited compression of the ellipsoid into a disk is not possible in the presence of pressure, 
since the velocities of gas and the gravitational forces under such compression remain 
finite and the pressure which counteracts compression increases unboundedly. Hence the 
Compression into a disk is followed by expansion (the transition occurs as an elastic 
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reflection of the velocity vector dF<k / dt from surface I;) and as the result, the semi- 
axes &1, 4 and fEs become comparable, the motion is again determined by gravitation- 
al forces and is approximated by the motion of the dust ellipsoid. This leads to a new 
compression of the ellipsoid into a disk (possibly along another direction) which after 
elastic reflection of the velocity vector from surface L in again followed by expansion, 
and so on ad infinitum. 

The validity of this approximation of the oscillatory mode does not necessarily require 
a strong compression of the ellipsoid, it is sufficient for fi = &z I’ (3G~) < 1 (by(2.2) 
this inequality is satisfied when the initial gas temperature is low). 

This approximation of the oscillatory mode is exact for strong compression of the 
ellipsoid (E -+ -m> or for p -+ 0. 

For ruch values of parameters the unique solutions of system (1.5) that do not reveal 
oscillations are solutions with spherically symmetric compression [15]. However such 
mode is unstable. Hence, when at some time interval the ellipsoid motion is close to 
spherically symmetric, this mode changes subsequently to an oscillatory one, Such oscil- 
lations are also accompanied by fluctuations of temperature 2’ (2.2) and of other phy- 
sical parameters of gas. 

4, I~v88tfg~t~o~ of the dynamic syrbm, (1) We transform by conven- 
tional methods the Lagrangian system (1.5) into a Hamiltonian system in phase coordi- 
nates qi = Fjk, Pi =: Fj,’ (i = ,& . . . . 9; i, k = 1, 2, 3). The energy E (a 
Hamiltonian) in these coordinates is of the form (n = 9) 

E = l/s (PI2 + . . . + P,“) + aVrVY (qz) - 3/s GMU (qi) 

We introduce in the phase space new coordinates 

(4.1) 

pi = Pi (aPY (q) + 3/sGMU ((I>-“, u = u (q) (pv1-7 (q) + u (4))~’ (4.2) 

yi = qiQ-‘ll, Q = 41’ + .a* + qn2, fJ = 8a ! (3G-M) 

Coordinates yi run through the unit sphere Sri-l: y12 $- . . . + yn2 = 1, coordinates 
pi run through the whole Euclidean space E”, and coordinate u runs through the inter- 
val 0 < a ( 1. Note that for y = 4! s coordinates u and yi are dependent ; below 
we assume that y < 41s. 

The Lagrangian system (1.5) in terms of coordinates (4.2) and time Z1 

dtl Z @VI-Y(q) + 
dt ( 

$ GNU (q) j”’ Q+V (y&l 

is of the form 
pi’==(l-y)(l-U) --$-&3$v 

> 
+ 

. z 

(4.3) 

(4.4) 

V(?I) NJ 1 u- ---2 piwl 
u 04 ( &Ii 1 

yi* = v (Y> (Pi - YZ (PkYk)) 

~~=u(l-u)(~wl-(l-y)w) 
W 

av 
= qPk* 

(summation is carried out by the recurrent subscript I% ).Let us consider system (4.4) for 
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E < 0 which in coordinates (4.2) is of the form 

E = 3/eGMf!mV (y)fl-Yfm (U (y) /’ a)3(1-y~m (1 - u>-~ (P + 1 - 2~) (4.5) 

m=1/(4--3y), P=‘/,(p1s+...+p,2) 

It follows from this that the region of E ,$ 0 (or P + 1 - 2u < 0) is a boundedset. 
Region S, in which system (4.4) is determined in coordinates (4.2) is specified by the 

conditions 0 < u < 1, E < 0 and V (yJ > 0 (physical properties of solution cor- 
respond according to ( 1.3) to points of surface V (qi) = 0 ). We supplement region 8, 
by the boundary I? consisting of four components that are determined by the following 
conditions: I’,,: u = 0; I’,: u = 1; rs: T’T (Yi) = 0 and I’s: E = 0. We denote 
by 5’ the manifold obtained by this addition of the boundary (we have on S : 0 \( 
u < 1, E < 0 and V (Yf) > 0). System (4.4) obviously extends over the boundary 
components I’,,, rl and 1’s. Using the simple properties of potential U (& (see [2]) 
it is possible to show that for V (yi) = det 11 Yj, /I+- 0 , expressions 

(v (Y) / u (Y)) au (Y> / dY i + 09 

hence we complement these expressions at the boundary component rs by zero which 
is their limit va@e. As the result of this ~pp~rnenta~ definition system (4.4) becomes 
continuously e&nded over the boundary component rs. 

It can be verified that all boundary components T and their intersections are invariant 
submanifolds of the dynamic system (4.4) in S, i.e. a trajectory that begins at some 
component of boundary r remains on it all the time. The system defined in this way 
on the boundary component r. (u = 0) is identical to the system which defines the 
motion of a nongravita~g gaseous elkpsoid, while the system defined on the boundary 

component TX (U = 1) is identical to the system which defines the motion of a gravi- 
tating dust ellipsoid. Thus the dynamic system (4.4) on the manifold S, which describes 
the motion of a gravitating gaseous ellipsoid, also contains the complete imformation 
about these two limit forms of motion. 

2) All singular points of system (4.4) on the manifold 5’ lie for E < 0 and y <“/3 

on the boundary I’ and constitute four sets: L, CD+, @_ and &i. 
a) Singular pointsof L (u = 1, V (#il = 0) are intersections of invariant subma- 

nifolds rr (U = 1) and l?s (V (yi) = 0). These singular points are (for W # 0) 
nondegenerate, unstable and have two nonzero eigenvalues 

& = (1 - y) W ( variable U) 

J,, = W (variables yi) 
(4. S) 

where the directions of related eigenvectors are indicated in parentheses. 
The remaining 2n - 2 zero eigenvalues relate to directions tangent to manifold L. 

Since y > 1 , the eigenvalues kr and La are of opposite signs, consequently, the singu- 
lar points of L are saddles, 

It is convenient to separate set L into two parts: L, ( W > 0) and L_ ( W < 0). 
Each singular point of L, has one incoming separatrix along manifold rs and one out- 
going separatrix along manifold q, while at point L- the situation is reversed. 

b) The singular points mE are : (U = 1, pi = &%yi, 8 = ti and Y, = 

Y,k =f: 3-‘:tQjk, where Qjk is an orthogonal matrix. Calculation of eigenvalues of 
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system (4.4) at singular points Q shows that these are nondegenerate and unstable, 
Each point of the three-dimensional set @_ has a four-dimensional incoming separatrix 
formed by diagonal solutions with the spherically symmetric hind of compression. These 
solutions generalize the exact spherically symmetric solutions, The outgoing separatrix 
is eleven-dimensional and lies on boundary ri at zero energy level. because of this 
the spherically symmetric compression is unstable. The properties of singular points @+ 
are identical to those of @_ for the opposite direction of time. 

c) The degenerate singular points M are: V (yJ = 0, 8V / dyi = 0 I and pi 
and u are arbitrary. At these singular points matrix 11 Yjk 11 is twice degenerated. 

Thus system (4.4) has no stable singular points for E < 0 and y ( 4/s , and this is 
one of the causes of the existence of the oscillatory mode. 

3) As noted above, the separatrices of singular points of L, and L_ lie on the invari- 
ant manifolds rr and r’s, Let us consider system (4.4) on these manifolds. 

a) On manifold I’, (u = 1) system (4.4) defines the motion of a gravitat~g dust 
ellipsoid, This hind of motion was investigated ln [lo], where it was shown that along 
each solution with negative energy E the ellipsoid volume I’ (F) vanishes twice, i. e. 
the compression state is followed by compression instead of expansion. The ellipsoid is 
compressed into a dish in the initial and fmal states for almost all solutions,i.e. 4 = 
0, d, # 0 and ds # 0. In terms of coordinates (4.2) this means that nearly all trajec- 
tories of system (4.4) on manifold rr for E < 0 have their beginning and end on the 
manifold of singular points of L (V (gyi) = 0 and D = 1) , or that a separatrix ema- 
nating from nearly every singular point of L, reaches some singular point of L . 

b) System (4.4) on the manifold I’s (V (gli) = 0) can be explicitly integrated. 
Trajectories of this system in time ‘t defined by 

dz~ = W (y - I) (1 - u) I grad V (YL”) / 6, 

are specified by formulas 

Yi = gi”t pi = (2’iVi (sin Z - sin X0) f pi0 COS Z,) / COS Z (4.7) 

u = toss 9, i cosa zr 

si = grad V (yi”) / 1 grad V (yi”) I; yio, ~a, pi0 = const, 

v (yi”) = 0 

i p;+=2’:2tgT,<o, ITO]<+, 

n 

2 pkS& = 2’:* tg T 
C=l h-=1 

The trajectory (4.7) is determinate for r. < z < -z,, and runs from the singular 

Point (Pi09 Yi”* a = 1) belonging to L_ to the singular point (pi1 = pi (-z,>, yi”, 
u = 1) belonging to L, (consequently all trajectories (4.7) are separatrices of singular 
points of L_ and L,). It will be readily seen that the end point of trajectory (4.7) 
(pi’ = $3~ (-‘Cd) is obtained from the starting point (pi”) by its reflection in a plane 
tangent to surface V (yJ = 0 at point (y*“). 

These results yield the following separatrix pattern: 

I1 L,,L_IT_L,‘,. . . . * I__ (4.8) 

where the transformations indicated by arrows denote the passing from the starting to the 
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end point along the separatrix. Transformations I and II are realized by the separatrices 

running over manifclds I’i and l?s , respectively. Separatrix transformations between the 
sets L,, L_ and Q, M are not shown in the pattern (4.8), because the whole unbounded 

sequence of transformations (4.8) does not lead out beyond the sets L, and I;_ for almost 

all singular points of L, and L_. 

6, Derivation of tha orcillrtory mode of allip,oid motion for 
E < 0. The unbounded sequence of separatrices determined by the pattern (4.8) is an 
approximation of trajectories of system (4.4) for considerable negative energy E , and 

also,for fi = 8a I (3GM) + 0. In fact function E (see (4.5)) is everywhere bounded 
yh;mmFfold S , except at the boundary components I’r (U = 1) and I’s (I’ (I/i)= 

,w +- -cc. Hence the trajectories of system (4.4) with considerable nega- 
tive energy E remain at all times in a small neighborhood of manifolds rr and rs 
(this is valid also for any E < 0, but then p --+ 0, see (4.2) which defines coordinate 
u). Consequently these trajectories run along the trajectories of system (4.4) on mani- 

folds 1‘, and rs, i.e. the general trajectory of system (4.4) runs along the sequence of 

separatrices of singular points of L, and L_. 
The obtained approximation of trajectories of system (4.4) by the sequence of sepa- 

ratrices (4.8) shows that the over-all motion of a gravitating gaseous ellipsoid with con- 

siderable negative energy E or small parameter fi has a pulsating, oscillating character. 

According to approximation (4.8) the trajectory appears periodically in the neighborhood 
of singular points of L, and L_ where det Yj, = V (yJ = 0, i.e. the ellipsoid is 
periodically compressed into a disk. Moreover it follows from the equation 

dV (qi) / dr, = v (qi)w (5.1) 

that the ellipsoid volume V (qi) reaches its maximum when the trajectory of system 
(4.4) runs along the separatrix transformation I, and when the trajectory runs along the 
separatrix transformation II it reaches its minimum (see (4.8)). The gas density p (t) 

(1.3) in the ellipsoid has also an oscillatory character. By virtue of the relationship 

dt = dq 1 E ~-3~$-1a1 U (y)V (y)u-’ 1 P + 1 - 221 13’1”, 1 = (2 - v)!(i - Y) 

(see (4.3) and (4.5)) the period of each pulsation of the. ellipsoid becomes arbitrarily 
smallfor E-t-co . 

For E -+ --oo the described pulsating motion of the ellipsoid occurs in a state of 
considerable compression, since the quantity (see (4.2)) 

d,2 + ds2 + dz2 = Q = @-2n (u (y) (1 - u) / u)~“V (@“(Y-l) (5.2) 

tends to zero for E -+ -oo (i.e. either V (y) -+ 0 or u --t 1). Note that in the pre- 
sence of gas spinning the ellipsoid cannot be reduced beyond a definite size. The first 

integrals J and K (related to the total moment of momentum of gas and to the vortex) 
of a Lagrangian system of the kind (1.5) are m] 

J = F.F” - F’.F’, K = F’.P’ _ F”.F (5.3) 

It can be shown that for E < 0, C # 0 and C = max {I J J, 1 K I} the following 
inequalities are valid : 

A2Bs / In B < di < (p (y - 1))-” 
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A = =/a C ((y - 1) I GM)‘ls, B = D I 2 In D 

D = A (fl (y - I))“/“, m = 1 / (4 - 3~9, s = 2 / (y - 1) 

The separatrix approximation (4.8) means that the motion of the trajectory system 

(4.4) occurs asymptotically for E--f - 00 or fi -+ 0 in coordinates yi as follows. 

1) The motion in region V (yi) > 0 takes place along the trajectories corre- 
sponding to the gravitation dust ellipsoid. In the general case that trajectory intersects 
surface V (yi) = 0 at some point y,” (transformation I). 

2) At the point of intersection the trajectory is elastically reflected from surface 
T’ (yi) = 0 (transformation II.see (4.8)). 

3) After that the motion takes place again along the trajectory corresponding to 
the gravitating dust ellipsoid up to the next intersection with the surface V (yi) = 0 , 
and so on. 

Thus it can be said that the model of the oscillatory mode of motion of the gravitat- 

ing gaseous ellipsoid is provided by a multidimensional billiard in the region det 11 Yj, II= 
V (yi) > 0 in an eight-dimensional space 5” (Tr (YOY’) = y12 + . . . + ye2 = 1) 
with an elastically reflecting boundary det II Yj, I( = 0. between collisions with the 
boundary the point moves along trajectories that define the motion of a gravitating dust 

ellipsoid, The presence of hydrodynamic pressure is revealed by the elastic reflection 
of a trajectory from the boundary det II Yj, II = 0. 

Note, Since on manifolds ri and ra system (4.4) is independent of y, there exists 
for y > 4/s an oscillatory mode ellipsoid motion which is approximated by the sepa- 

ratrix pattern (4.8). The physical content of such oscillatory mode is, however, entirely 
different. Since by virtue of (4.5) function E ‘in the neighborhood of manifolds I’, and 

rz is for y > 4/s close to zero, and by (5. 2) the quantity d,s + d22 + ds2 is infinit- 
ly great, hence an ellipsoid in oscillatory mode has a small energy when E < 0 and 

Y>4/3 > and the gas is considerably rarefied, For E -+ 0 the period of each oscil- 
lation can be arbitrarily great, 

6, Appendix, The problem of spreading of a spinning fluid ellipse in the theory 
of shallow water (when y = 2) is the analog in two-dimensional hydrodynamics of the 

problem of gaseous ellipsoid expansion in vacuum. That problem was integrated in quad- 

rature in [8]. Let us show that an oscillatory mode, similar to that described in Sect. 2, 

obtains also in that problem. 
We introduce in the space of two-dimensional matrices Pii the coordinates r, 9, ~1 

and ‘Pi 

11;:: ;:I~=~~:;:;: -z;:~~.l~rc~’ ,,,p,JI/z;:;: -:::ii 

In the two-dimensional problem a Lagrangian system similar to (1.5) has the Lagrangian 
(0 = + i) 

L = ‘ia (r’s + +q’z + (‘pi.s+‘pia) + + ~Q’(P~‘G sin 2cp) - ZG (rs sin W)-’ (6.1) 

The lasting momenta p,; = dL / i3cpl’ = J and p,, = 8L / dqa’ = K which coincide 

with the integrals (5.3) correspond to the cyclic coordinates (~1 and ‘Pz 
In the phase coordinates pr = aLlai’, pQ = aL / aq’, r and v the Lagrangian System 

with Lagrangian (6.1) becomes a Hamiltonian system with the Hamiltonian 

II = Yzp,2 + (‘izP,2 + u (9)) I r2 (6.2) 
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Jz + Kz + 2JK sin 2q 20 
u (cp) = 2cos= 2q + sin 

The substitution of coordinates r = 1 I x and time dt = Pdr splits this system into two 
Hamiltonian systems with Hamiltonians 

H = - llzpra - xaHo, Ho = %pqpa + U (cp) 

It follows from (6.2) that (for u - + 1 and J # - K) U (cp) -_, CO when cp + 0, n/4. 
Hence angle cp oscillates in the potential pit determined by the potential U (cp) (shown 

A in Fig. 1 by the solid line). Oscillations of angle cp determine 
u 

v_ 

the variation of the ratio of the ellipse semiaxes d, = r co9 ‘p 

I 
and d, = r sin ‘p and provide the image of the general oscilla- 

: 
tory mode considered in Sect. 2. 

I’ 

Let us estimate the number of small oscillations of angle q 
in the proximity of the equilibrium state cpo (3U / @I (cpo) = 0) 

1 1' 
during the total time T of solution existence, when the x - 

xl-’ 
1 I I coordinate varies from zero (~2 = dIa -I- dsa = 00) to its maxi- 

/’ I I mum X* = 1 H 1” 1 H, 1 -% and back to zero. Hence the time 

O/%R % FY T = n (2H,)-“‘. The period of small oscillations of angle cp is 

Computations show that for J s K > 1 
I 

T, s 2n (Uqp” (q+,))-“. 

I the root of equation aU / acp = 0 is ‘p. z (2JK)+‘. At that 

Fig. 1 point H, s U (cp,) z l/2 (Ja + K2), Urp” (cpo) z 4 (2JK)“’ 

Hence T = n (Ja + Ka)-*/’ and T, = n (2JK)-*h. For J s K -+ CO the number of 
oscillations N = T / T, increases as Jxiz and can be arbitrarily high. It can be shown 

that small oscillations of angle rp with amplitude - cpoa” 4 ‘p,, determine oscillations 
of the quantity sin 2~ I 2x2 = V (F). 

Let us briefly consider the two-dimensional problem similar to that of compressing a 
drop of fluid under pressure [18]. The Lagrangian L for that problem is of the form 
(6.1)with a=-i.For cp+Othepotential U(q)+ --andforcp-+x/4, U(cp)-+ 

00 (seethedashlineinFig.1). For Js-KKI andJ#-Kand O<(p<n/4 
potential U (cp) has two extrema: maximum ‘pr and minimum ‘pa with U (cpz) > 0. 

Solutions in which angle cp oscillates in the neighborhood of minimum Q have no phy- 
sical singularities with compression from the rarefied state being followed by expansion. 
There are apparently no similar solutions of the three-dimensional problem [18]. 

Note that the infinitely high barrier of potential U (cp) for cp = n / 4 has a purely geo- 
metric origin. In the four-dimensional space of matrices Fij the set of matrices with 

dr = d, is of second order. Hence for almost all trajectories of the Lagrangian system 
(6.1) dI # d, at all instants of time, and, consequently, nearly all trajectories of the 
Hamiltonian system (6.3) do not intersect the surface cp = n / 4, which is only possible 
in the presence of an infinite potential barrier. For the same reasons in the three-dimen- 

sional problem the relation between the ellipsoid semiaxes dI < da < d, is maintained 
for almost all motions of gas at all instants of time. 
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Small amplitude resonance oscillations in a nonlinear system close to the stabi- 
lity limit are considered. The Van der Pol equation with a supplementary para- 
meter is derived for the oscillation amplitude ; in an autonomous system that 
parameter defines the dependence of oscillation frequency on amplitude. 


